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Abstract We propose a model for the dynamics of a social system, which includes diffusive
effects and a biased rule for spin-flips, reproducing the effect of strategic choices. This model
is able to mimic some phenomena taking place during marketing or political campaigns.
Using a cost function based on the Ising model defined on the typical quenched interaction
environments for social systems (Erdös-Renyi graph, small-world and scale-free networks),
we find, by numerical simulations, that a stable stationary state is reached, and we compare
the final state to the one obtained with standard dynamics, by means of total magnetization
and magnetic susceptibility. Our results show that the diffusive strategic dynamics features a
critical interaction parameter strictly lower than the standard one. We discuss the relevance
of our findings in social systems.

Keywords Diffusive dynamics · Social systems · Stationary states

1 Introduction

In the past few years the application of statistical mechanics to social phenomena gave rise
to interesting models, which were able to capture some general mechanisms in opinion
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forming. In these models, the relations between people in a group are represented by a
network with a given topology, where sites are people, links model interactions and the
opinion of a single agent is typically represented by a discrete variable on the corresponding
site.

One of the most important aspects in opinion forming within a community is the dynam-
ics through which decisions of single agents take place, possibly leading the system to a
stationary final state. In this framework different approaches have been considered, in order
to investigate the configuration reached by the system at different time scales. A common
approach, as in voter model and Axelrod dynamics (see e.g. [1–3]), is to introduce directly
a dynamical rule according to which discrete variables, representing the choice of a single
agent, evolve. Then, the average value of these discrete variables and its dependence on the
dynamics itself as well as on the initial conditions is investigated. However, in many situ-
ations, ranging from polls to marketing analysis, relevant global parameters describing the
behavior of large but finite subsamples of the populations are not rapidly changing on the
time scale considered. If the results of the experimental measurements are stable, then it
can be meaningful to analyze the social system by looking at its equilibrium or stationary
behavior. This approach, directly linked to statistical mechanics and used in social sciences,
is based on the introduction of a dynamics derived from a cost function H [4–7], which
depends on the configuration of the system and on a set of parameters, measuring the in-
teraction between people in the community. The cost function theory has also shown its
potentials in micro-economy especially thanks to the work of Mc Fadden [8]. There, quan-
titatively precise predictions were made on social behavior by means of discrete choice
theory, a simple probabilistic approach based on the individual independent choice assump-
tion, which corresponds to non-interacting agents. Among the main purpose of the present
paper there is the attempt to extend to interacting systems the approach pioneered in [8]
and successfully applied to social systems by Durlauf [4] within the framework of equilib-
rium statistical mechanics of deterministic systems. Our work here extends those previous
findings in several directions: first it assumes that there is interaction (including the random
case) among the agents and investigate the possible steady states by means of natural dy-
namical systems usually encountered in social behavior. The dynamics is implemented with
a cost function in which the parameters measuring the interactions between people can be
assumed to be frozen. In real world phenomena the dynamics has two built-in time scales:
one for the opinion flip, the other for the interaction change. In most of the social and eco-
nomical examples the interactions among individuals change at a rate enormously slower
than the opinions of each of them. In modeling such situations the interactions variables will
be considered as frozen during the whole run of the dynamics and the physical quantities
will be averages of stationary states. The procedure is known as “quenched” stationary state
and parallels the standard quenched equilibrium measure of disordered systems (like spin
glasses) in which the free energy is computed averaging in the disorder after the logarithm.

Once the cost function and the related evolution dynamics are identified, the system
can be studied numerically, for example via Monte Carlo simulations. In particular, if one
expects that the final state reached by the system will obey an equilibrium Boltzmann dis-
tribution, the dynamics is usually implemented to lead the system to that state, imposing a
detailed balance condition. However, this is quite unrealistic in real social communities.

As a matter of fact, dynamical evolution within social networks often exhibits a strategic
character: each agent often chooses between his neighbors and decides which link to activate
at a given time, according to his own advantage, based on the observation of what happens
to his neighbourhood.

A common situation is the following: people try to convince their neighbours in order to
share the same opinion or trait because of ideological reasons or, also, because this translates
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in some economical advantage. To fix ideas let us suppose that the opinion or the trait con-
sidered can be described by a binary variable. For example, during an electoral campaign or
before a referendum, people try to convince their acquaintances to support a given candidate
or a given position. In a different context we can think about a community of people where
each agent has made a subscription to a phone company. Let us suppose that only two differ-
ent companies, A and B, exist so that we can distinguish between A-users and B-users. Now,
fares for phone-calls are different according to whether the call occurs between customers of
the same company or between customers of different companies, being higher in the latter
case. As a result, for an A-user (B-user) the optimal situation is when all his acquaintances
are also A-users (B-users) as he can then enjoy low fares. Hence, each agent would like to
induce his neighbours to adopt the same company.

In both situations cited above, strategies are possible if an agent knows the neighbour-
hood of his acquaintances. As an example, if I want to increase the number of, say, A-users,
among my acquaintances, I can either pick up a friend of mine randomly among those who
are B-users and try to convince him to become an A-user, or select among my friends the
B-user whose acquaintances are mostly A-users. The latter strategy is of course expected to
be more effective.

Another important aspect in dynamics concerns the rule according to which agents are
selected and given the possibility to change opinion. Of course, a deterministic updating,
though computationally efficient, is unrealistic: the dynamics must contain a stochastic char-
acter, reproducing the randomness typical of social interactions [9–12]. More likely, we can
assume that the opinion updating results from phone calls, mail exchanges and other con-
tacts among agents and this exhibits a diffusive feature. Hence, the newest updated agent
will choose among his neighbours the next agent to be updated.

In this paper, we intend to study the equilibrium reached by the system, where an explicit
cost function has been introduced, endowed with a dynamics which takes into account these
two aspects: strategy and diffusion. We first focus on the dynamical process, modelling the
quenched social network by an Erdös-Renyi random graph. This graph provides a stochastic
network, able to capture some aspects of a real community, and allowing for some exact
calculations [13–15]. We then extend our results to scale free and small-world networks,
which are known to reproduce the typical topological features of real social networks [16–
19]. We adopt as a cost function the ferromagnetic Ising Hamiltonian which, being one of
the simplest model mimicking interactions amongst the agents of social systems, allows us
to focus on the dynamical process. In particular, the interaction parameter J here represents
the “imitation strength” and it measures how important it is for two nearest-neighbours to
agree. For instance, in the phone companies example, a large value of J corresponds to a
situation where a phone call between A-A or B-B users is much cheaper than a phone call
between A-B users. We focus here on ferromagnetic interactions as these are considered to
be the predominant feature of social interactions in several contexts [20]. Our dynamics can
however be extended to the case of more complex interaction patterns.

We find that after a suitable relaxation time the values of the global observables of the
system display time averages independent of the initial conditions and whose fluctuations
decrease with the system size, indicating that a stationary situation is reached. We also re-
cover the phase diagram expected for the Ising model on the Erdös-Renyi random graph,
small-world and scale-free networks, and this implies that in all these cases there exists an
interaction parameter Jc such that if J < Jc the number of A-users equals, on the average,
the number of B-users, while if J > Jc a prevailing group emerges. However, we evidence a
remarkable difference: With respect to the case of a non-strategic dynamics, the critical re-
gion is always shifted to a lower value of the interaction parameter J . In the example of the
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competition between the two phone companies, this means that, once the price policy has
been set by the companies, i.e. once a given J > Jc has been fixed by the price differences,
if the equilibrium is reached by a strategic dynamics, the extent of the prevailing community
is larger. The existence and the position of a transition point represent a key information
in a social system, as they signal an unstable situation, which is to be favored or avoided,
depending on the meaning of the global parameter. Moreover, it is important to understand
what influences the position of the critical region in order to control and tune it, if possible.
Our result suggests that the onset of the critical regime is indeed influenced by the dynamics.

The paper is organized as follows: in Sect. 2 we present our model and we describe the
topologies it is embedded in. Then, Sect. 3 is devoted to the description of the strategic
diffusive dynamics introduced and in Sect. 4 we show our results. Finally, Sect. 5 is left for
conclusions and outlook.

2 Model and Notations

A social network is meant as a (typically large) set of people or groups of people, also
called “agents”, with some pattern of interactions between them. This can be efficiently
envisaged by means of a graph whose nodes represent agents and links between two of them
represent the existence of a relationship (which could be acquaintanceship, friendship, etc.).
Therefore, each agent i is connected with a set of “nearest-neighbours”, whose number αi

is referred to as the “degree” of the node i.
Now, several kinds of graph have been proposed in the past as models able to mimic the

features displayed by a real population, and they are all built starting from three main topolo-
gies: random graphs, small-world and scale-free networks. The random graph introduced by
Erdös and Rényi (ER) [21] is one of the most studied since it combines a stochastic char-
acter with an easy definition which allows to calculate exactly many interesting quantities
[15]. However, real social networks have been shown to feature some peculiar topological
and metric properties, which are not all included in the ER random graph. Two typical fea-
tures are: power-law degree distribution (scale-free topology), shortness of geodetical path
(small-world phenomenon).

The ER random graph can be defined as follows: given a number N of nodes, we intro-
duce connections between them in such a way that each pair of vertices i, j has a connecting
link with independent probability p. As a consequence, the probability pα that a node in a
random graph has degree exactly equal to α is given by the binomial distribution [13]. The
small-world network can be built starting from a ring with N nodes, and “superposing” to
the ring a random graph with given mean connectivity α, by adding a link to two points i and
j on the ring with probability pα = α/N (but it is possible to obtain small-world topologies
with different rules [22]). To account for the large variability of the degree in real social
networks, one of the most studied topologies is the scale-free graph, where the probability
pα that a node has degree equal to α is given by a power law:

pα ∼ α−γ (1)

with 1 < γ < 3.
We now outline the general framework for modeling interactions among agents. First of

all, we associate to each agent i a binary variable si = ±1, representing the two possible
forms of the considered opinion or trait. For example, si = +1 might indicate that the i-th
agent does support the current government or is an A-user, while si = −1 that he does not
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support the current government or that he is a B-user. The whole community, described by
the set s = {s1, s2, . . . , sN }, will therefore be characterized by the mean value

m = 1

N

∑

k

sk, (2)

which can be measured by, say, a referendum vote or a survey.
We assume that agents do not possess any a priori bias towards +1 or −1 state, but they

move towards a given trait as a result of the interaction with their nearest-neighbours. More
precisely, we introduce a cost function Hik which quantifies the cost for individual i to agree
with individual k as [23]

Hik(si, sk) = −Jiksisk, (3)

where Jik represents the strength of interaction between agents i and k. When i and k agree
(sisk = 1) we have a cost Hik = −Jik , while when they disagree (sisk = −1) we have Hik =
Jik . Thus, the interaction works in such a way that, when Jik > 0, then i and k tend to imitate
each others assuming the same trait and vice versa when Jik < 0. The magnitude of Jik gives
how important it is for i to agree or disagree with k [20].

For the whole population we have the total cost function

H(s,J) =
∑

k∼i

Hik = −
∑

k∼i

Jiksisk, (4)

where the sum is extended over all the couples of nearest-neighbour agents denoted as k ∼ i.
The cost function of (4) is just the well-known Ising Hamiltonian (see e.g. [24]) which

can be treated by statistical tools. As it is well known, the cost function H(s,J) does not
lead to any natural dynamics and it is a very interesting matter of investigation to define
a proper dynamics able to make the system evolve towards an “equilibrium” state. This
can be achieved in several ways: apart from exact analytical approaches, available only
for special structure topologies (one dimensional and two dimensional lattices) and mean-
field solutions, a number of approximate techniques have been developed, including series
expansions, field theoretical methods and computational methods.

Here we adopt Monte Carlo (MC) numerical techniques in order to simulate the evolution
of the system from a given initial configuration s0 to the stationary state, which in general
does depend on the evolutionary dynamics D we choose and on the parameters Jik.

Notice that J can be chosen to be directed and group dependent and this may account, in
the examples discussed in the introduction, for different influences and fares inter and intra
different groups. For instance, if, say, the A company applies very high costs for phone calls
between different users, we expect the pertaining interaction strengths to be very large. On
the other hand, if for a B user costs for phone calls towards A users are only slightly more
expensive then the relevant interaction strengths are small.

3 Diffusive Strategic Dynamics

In order to simulate the evolution of the population described by the cost function in (4),
several different algorithms have been introduced. Among them a well-established one is
the so-called single-flip algorithm which makes the system evolve by means of successive
opinion-flips, where we call “flip” on the node j the transformation sj → −sj .
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More precisely, the algorithm is made up of two parts: first we need a rule according to
which select an agent to be updated, then we need a probability distribution which states
how likely the opinion-flip is.

As for the latter, we adopt the well-known Glauber probability: Given a configuration s,
the probability for the opinion-flip on the j -th node is given by

p(s, j,J) = 1

1 + e�H(s, j,J)
, (5)

where �H(s, j,J) is the variation in the cost function due to the flip sj → −sj . Notice that,
for single-flip dynamics, the cost variation �H consequent to an opinion-flip only depends
on the opinion of a few agents, viz. the j -th one undergoing the flipping process and its αj

nearest-neighbours. This can be shown by spelling out the cost function variation appearing
in (5):

�H(s, j,J) = 2sj

∑

i∼j

Jij si . (6)

Interestingly, as can be derived from (5), each opinion-flip is the result of a stochastic
process featuring a competition between an energetic and an entropic term: the lower the
cost of the opinion-flip and the more likely its occurrence. The external parameter J tunes the
probability for an energetically unfavourable event to happen: For very low values of J any
event is equally likely to happen independently of the magnetic configuration, conversely,
for high values of J, when the agent j is surrounded by agents sharing the same opinion, the
flipping of sj gets a rare event.

As already recalled, the opinion-flip probabilities just described can determine a dynam-
ics only after a prescription for updating the system has been introduced. In other words, we
first need a selection rule according to which extract agents, then the opinion of the selected
agent will be possibly updated according to p(s, j,J). There exist several different choices
for the first procedure, ranging from purely random to deterministic.

Now, the most popular algorithms select nodes to be updated according to a sequential
order which, though computationally efficient, appears rather artificial in a social network.
Indeed, unless no predetermined strategies are at work, the random updating (D = R) seems
to be the most plausible. In this case the probability that the current configuration s changes
into s′

j due to the flip sj → −sj , reads

P R(s, j ;J) = 1

N
p(s, j,J). (7)

The dynamics generated by P R has been intensively studied in the past (see e.g. [25])
and it has been shown to lead the system to the usual equilibrium (canonical) distribution,
derived from the cost function H .

However, in a social context, we notice that an opinion-flip can occur as a result of a
direct interaction (phone call, mail exchange, etc.) between two neighbours and if agent i

has just undergone an opinion-flip he will, in turn, prompt one out of his αi neighbours to
change opinion [9–12]. This kind of picture cannot be described by a random updating rule.
Moreover, in many situations, the arbitrary agent i aims to be surrounded by neighbours j

sharing his own opinion (being this a cultural trait or a phone subscription), i.e. sisj = 1,
because this translates in some advantage for agent i.

Here we want to explore a relaxation dynamics, D = S , able to take into account these
aspects, namely a realistic selection rule and a proper strategy. With respect to traditional
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dynamics, S displays two important features: (i) the selection rule exhibits a diffusive char-
acter: The sequence of sites selected for the updating can be thought of as the path of a
random walk moving on the graph representing the social network; (ii) the diffusion is bi-
ased: The αi neighbours are not equally likely to be chosen but, amongst the αi neighbours,
the most likely to be selected is also the most likely to undergo an opinion-flip, namely the
one which minimizes �H(s, j,J). This corresponds to a local strategic choice of agent i, as
the chance to obtain an opinion flip is high, though the stochastic character is preserved.

Let us now formalize how S works. Our MC simulations are made up of successive steps,
each of them follows as:

– Being i the newest updated agent (at the very first step i is extracted randomly from
the whole set of agents), we consider the corresponding set of nearest-neighbours defined
as Ni = {i1, i2, . . . , iαi

}; we possibly consider also the subset Ñi ⊆ Ni whose elements are
nearest-neighbours of i not sharing the same opinion: j ∈ Ñi ⇔ j ∈ Ni ∧ sisj = −1. Now,
for any j ∈ Ni we compute the cost function variation �H(s, j,J), see (6), which would
result if the flip sj → −sj occurred; notice that �H(s, j,J) involves not only the nearest-
neighbours of i, but also its next-nearest-neighbours.

– We calculate the probability of opinion-flip for all the nodes in Ni , hence obtaining
p(s, i1,J),p(s, i2,J), . . . , p(s, iαi

,J), where p(s, j,J), see (5), is the probability that the
current configuration s changes due to a flip on the j -th site.

– We calculate the probability P S (s; i, j ;J) that, among all possible αi opinion-flips
considered, just the j -th one is realized. This probability is defined as:

P S (s; i, j ;J) ≡ p(s, j,J)∑
k∈Ni

p(s, k,J)
, (8)

namely it follows by properly normalizing the p(s, j,J). Notice that, according to (8),
among the nodes included in Ni , those which are more likely to be flipped are also the
more likely to be selected for the spin-flip.

We can possibly restrict the choice just to the set Ñi , hence defining P̃ S (s; i, j ;J) ≡
p(s, j,J)/

∑
k∈Ñi

p(s, k,J). The probabilities P S and P̃ S are non trivially different from
each other, due to the fact that they depend not only on the magnetic neighbourhood of the
current site i, but also on the next-neighbourhood. As a consequence, in general, the next
flip will not necessarily occur in Ñi , not even for large coupling strength. Nonetheless, as
we have verified numerically, the most striking result induced by the strategic dynamics, i.e.
a shift of the critical region towards lower values of the interaction parameter (vedi infra) is
preserved if we adopt P̃ S instead of P S .

– According to the normalized probability P S (see (8)), we extract randomly the node
j ∈ Ni and realize the opinion flip sj → −sj .

– We set j ≡ i and we iterate the procedure.
Some remarks are in order now. The detailed balance condition usually implemented in

standard dynamics and leading to a standard Boltzmann distribution, is explicitly violated
(see [26, 27] for more details). This does not contradict our dynamic intent: the evolution
is not meant to recover a canonical Boltzmann equilibrium, but rather to model a realistic
dynamics making the system evolve. By comparing (7) and (8), we notice that the latter has
an additional site dependence. As a result, the analytical approach to the master equation is
extremely difficult. Using the expressions for the probabilities in (8), the evolution equation
for the probability P (s, i, t;J) that, at time t , the system is in the configuration s and the last
spin flip occurred at site i reads:
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P (s, i, t + 1;J) − P (s, i, t;J)
∑

k∈Ni

P S (s; k, i;J)P (s′
i , k, t;J) − P S (s; i, k;J)P (s, i, t;J), (9)

where s′
i represents the spin configuration which differs from s only for the value of si .

Interestingly, the additional dependence on the sites can be interpreted in term of a biased
random walker, located on site i and implementing the dynamics by interacting with the
spin system [26]. Therefore the master equation can be seen to describe, at a given time
t , the evolution of the probability for the spin variables to be in the configuration s and
for the random walker to be located at site i. This makes the analytic approach difficult,
even in the simplest lattices. Some general results, mainly numerical, have been obtained
previously and in different contexts; we now briefly review some basic facts, while for more
detailed information we refer the reader to [26, 27]. Firstly, the diffusive dynamics is able to
eventually drive the system to a thermodynamically well-behaved steady-state, characterized
by the choice of the interaction coupling J and by the underlying topology, and also to
recover the expected phase transition. However, the steady-state reached differs from the
expected canonical equilibrium in a non-trivial way [26]. A particular evidence of this is
provided by the fact that the critical temperature (or, similarly the critical coupling) obtained
with the diffusive dynamics is significantly larger than the one expected and such an effect
can not be accounted for by a simple rescaling of the temperature [26]. Moreover, such
results appear to be robust, as they hold also on general finite dimensional structures and for
spin-1 models [27].

Finally, it is worth underlying that such a diffusive dynamics is intrinsically meant for
finite systems. First of all this is consistent with our intent to model the dynamics within a
community which is, indeed, finite. Moreover, on finite, connected graphs without traps, a
random walk is always recurrent and visits each site. This ensures that if our Monte Carlo
simulation is run long enough, each agent is selected for the spin-flip a number of times
sufficient to obtain a series of decorrelated states over which perform statistical averages.
Interestingly, the rate at which a given site is visited depends non-trivially on its local mag-
netic environment as well as by the temperature and by the network topology. In particular,
as shown numerically in [28, 29], sites more likely to be selected for the updating correspond
to borders between clusters.

4 Numerics

As mentioned before, the analysis of the diffusive dynamics has been carried out mainly
from the numerical point of view by means of extensive Monte Carlo simulations [25]. Here
we focus on the particular case of interaction parameters Jik independent of the particular
couple of agents considered, i.e. Jik ≡ J , for any i, k; this allows to highlight the role of the
dynamics leading the system to a stationary state and to understand how it possibly affects
such stationary state and the average trait mD .

In the simulation, once the network has been defined, we place a binary variable si on
each node i and allow it to interact with its nearest-neighbors. Once the external parameter
J is fixed, the system is driven by the single-flip dynamics and it eventually relaxes to a
stationary state characterized by well-defined properties. More precisely, for an ER random
graph characterized by parameters α and J , after a suitable time lapse t0 and for sufficiently
large systems, measurements of a (specific) physical observable x(s, α, J ) fluctuate around
an average value only depending on the external parameters J and α.
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Fig. 1 Thermalization of a ER
random graph made up of
N = 6000 agents and α = 30.
Two dramatically different initial
configurations are considered and
compared: an ordered
configuration with si = 1 for any
i and a random configuration
with si = 1 (si = −1) with
probability 1/2

We also verified that, for a system of a given finite size N , the extent of such fluctuations
scales as N− 1

2 (see also [26, 27]), as indicated by standard statistical mechanics for a system
in equilibrium. The estimate of the a given observable 〈x〉 is therefore obtained as an aver-
age over a suitable number of (uncorrelated) measurements performed when the system is
reasonably close to the equilibrium regime. The estimate is further improved by averaging
over different realizations of the underlying random graph with fixed α. In summary,

〈x〉α,J ≡ E

[
1

M

M∑

n=1

x(s(tn))

]
, tn = t0 + nT (10)

where s(t) denotes the configuration of the system at time step t and T is the decorrela-
tion parameter (i.e. the time, in units of spin flips, needed to decorrelate a given magnetic
arrangement from the initial state); the symbol E denotes the average over different realiza-
tions of the graph.

In general, during a MC run in a given sample we find statistical errors which are signif-
icantly smaller than those arising from the ensemble averaging (see also [30]).

We stress once again that the final state obtained with the diffusive dynamics is stable,
well-defined and, in particular, it does not depend on the initial conditions., i.e. it has all
the properties of an equilibrium state. This is of course well-established for standard dy-
namics and it was also verified for our diffusive dynamics. An example is shown in Fig. 1
where, for a ER random graph, with given (α, J ), the specific value around which m(tn)

eventually fluctuates does not depend on the choice of the initial configuration selected for
the simulation. To this aim we plotted m(s(tn)) obtained starting with a completely ordered
configuration (m0 = 1) and with a completely random one. Moreover, we verified that the
measurement of the (specific) observables within a macroscopic subsystem yields the same
results characterizing the whole system. Similar results hold for scale free and small-world
networks.

In the following we focus on systems of sufficiently large size so to discard effects related
to small N . For the ER random graph, for a wide range of interaction constants J and
average coordinations α, we measure the average magnetization 〈m〉α,J (hereafter 〈m〉) and
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Fig. 2 Average opinion 〈m〉 for
a population of N = 6000 (•) and
N = 9000 (×) agents on a ER
random graph with p = 0.0015
and p = 0.0010, respectively; the
average number of
nearest-neighbours is therefore
the same for both systems, α = 9.
Results obtained with a
heath-bath dynamics (R) and
with the strategic dynamics (S )
are compared: for the latter a
smaller critical parameter Jc is
found

the susceptibility χ , calculated as

χ(α,J ) ≡ JN [〈m2〉 − 〈m〉2]. (11)

This quantity measures, at equilibrium, the reactivity of the system to a small external per-
turbation. Moreover, we compare results obtained for our dynamics with those obtained
through a well-established algorithm, i.e. the Glauber heath-bath with random updating
(D = R), which is known to lead the system to a canonical steady state.

In Fig. 2 we show results pertaining to ER random graphs of different sizes (N = 6000,
N = 9000), but keeping the average coordination number fixed (α = 9 corresponding to p =
0.0015 and p = 0.0010, respectively). Their profiles display the typical behaviour expected
for the Ising model on a random graph [15] and, consistently with the theory, highlight a
phase transition at a well defined value J S

c (α). Otherwise stated, there exists a critical value
of the parameter J below which the system is spontaneously ordered.

Note however that J S
c (α) is appreciably smaller than the critical value Jc(α) ≈ 1/α ex-

pected for the canonical Ising model defined on the ER random graph [15].
An analogous behavior is also observed on scale-free and small-world networks; data

for the average opinion 〈m〉 on these structures is shown in Fig. 3. More precisely, for the
scale-free network considered here, the degree distributions for nodes follows the power law
pα ∼ α−γ with γ = 2.3; as for the small-world network, this has been built according to the
prescriptions explained above and in such a way that the average degree per node equals 4.

Remarkably, similar diffusive dynamics have been shown to lead an analogous decrease
of the critical interaction parameter on regular structures [26] and also for the spin-1 Ising
model [27–29]. In these cases it was proved that a simple rescaling of the interaction constant
J can not account for the differences between results produced by the diffusive dynamics
and a heath-bath dynamics. This feature constitutes a first signature of the fact that the equi-
libria generated by the diffusive dynamics are not governed by the Boltzmann distribution.

As mentioned above, on an ER random graph the critical value Jc depends on the system
size and on the probability p, through their product α, i.e. Jc ≈ 1/α. In order to check if a
similar behaviour also holds for the dynamics S , we now fix the size of the system and make
α vary; results for N = 9000 with α = 11,30,45 are reported in Fig. 4. Indeed, also for J S

c ,
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Fig. 3 Average opinion 〈m〉 for
a population of N = 1000 agents
on a scale-free (left panel) and
small-world (right panel) graph.
Results obtained with a standard
dynamics (R) and the strategic
dynamics (S ) are compared: for
the latter a smaller critical
parameter Jc is found

Fig. 4 Average opinion 〈m〉 for
a population of N = 9000 agents
with α = 11 (•), α = 30 (×) and
α = 45 (open circles) on a ER
random graph. Results obtained
with a standard dynamics (R)
and the strategic dynamics (S )
are compared: for the latter a
smaller critical parameter Jc is
found

we evidence a monotonic increase with α, however, in order to establish the actual relation
between J and α, further extensive simulations are necessary.

Similar to what happens with the usual dynamics, the relaxation time needed to drive the
system sufficiently close to the equilibrium situation is found to depend on the parameter J .
More precisely, we experience the so called critical slowing down: the closer J to its critical
value, the longer the relaxation time.

We now turn to the susceptibility defined in (11); results for the ER random graph are
shown in Fig. 5. In the thermodynamic limit, at the critical point Jc , the susceptibility di-
verges, while for finite sizes the susceptibility is expected to display a peak at Jc . This kind
of behaviour is found also when the diffusive dynamics is applied and χ just peaks at J S

c .
An important point is that the shape of the curve is not modified, indicating that the reaction
of the system to an external perturbation is conserved, with respect to the usual equilibrium,
in the vicinity of the critical point. The social system is therefore expected to behave in the
same way. Hence, we have further evidence of the fact that the diffusive strategic dynamics
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Fig. 5 Average susceptibility χ

for a population of N = 9000
agents with α = 30 (×) and
α = 45 (◦) on a ER random
graph obtained with the strategic
dynamics. Notice that the
function peaks at a value smaller
than the critical Jc expected for
standard dynamics (dotted lines)

recovers the phase transition typical of the Ising model, though providing a lower value for
the critical interaction parameter.

5 Conclusions and Perspectives

In this paper, we have introduced a dynamics for social systems displaying diffusive and
strategic character. This dynamics has been shown to relax the system to thermodynami-
cally well-behaved steady states; in particular, after a suitable time, the values of the global
observables of the system display averages independent of the initial conditions (which can,
at least, affect the orientation of the asymptotic arrangement). The magnetization, repre-
senting the average trait reached by the system as a function of the interaction parameter
J , features a transition at a value of J which is strictly lower than the one obtained with
a non-strategic random choice for the opinion flips, on the same network. In particular, on
the ER random graph, also the shape of the susceptibility near the transition point is con-
served, indicating that the reaction of the social system to a small external perturbation in
the stationary state is not modified.

This picture indicates that with a strategic (local) choice in opinion flips a full-consensus
configuration is obtained for lower values of the interaction parameter J , namely it is “eas-
ier” to obtain a community with an oriented opinion. Differently stated, in a society where
a given value of the interaction J is present, the number of people with an oriented opinion
is higher if the equilibrium is reached by a strategic opinion flip. The shift effect on the
critical parameter is a general feature of the strategic dynamics, and our results have been
shown to hold on very different topologies, such as ER random graph, scale-free random
networks with hubs and small-world networks [16]. Transition points in social systems lead
to extreme sensitivity of the global parameter to interactions, so its position and its shift
represent a key information in the understanding of the stationary state. It can be interesting
to enhance them or to avoid them, depending on the meaning of the global parameter.

Finally, our dynamics allows a number of generalizations concerning, for instance, the
number of possible cultural traits or competitive companies admitted (namely the magnitude
of the spin variable) [27], the possible presence of an external magnetic field (representing
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the effect of external biases such as advertisement) or a more complicated set of constant
parameters Jij . In particular, J could be a directed, block matrix and this would account
for different fares inter and intra distinct groups; in this case it would be very interesting
to understand the conditions, in terms of J elements, for the realization of an oriented (i.e.
magnetized) system.

Acknowledgement The authors are grateful to Adriano Barra for interesting suggestions and stimulating
discussion. EA thanks the Italian Foundation “Angelo della Riccia” for financial support.

References

1. Castellano, C., Fortunato, S., Loreto, V.: eprint arXiv:0710.3256 [physics.soc-ph] and references therein
(2003)

2. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter, and Exclusion Processes. Springer, New
York (1999)

3. Axelrod, R.: The dissemination of culture: a model with local convergence and global polarization.
J. Confl. Resolut. 41, 227–254 (1997)

4. Durlauf, S.N.: How can statistical mechanics contribute to social science? Proc. Natl. Acad. Sci. USA
96, 10582–10584 (1999)

5. Galam, S., Moscovici, S.: Towards a theory of collective phenomena: consensus and attitides changes in
groups. Eur. J. Soc. Psychol. 21, 49–74 (1991)

6. Borghesi, C., Bouchaud, J.P.: Of songs and men: a model for multiple choice with herding. Qual. Quant.
41, 557–568 (2007)

7. Gallo, I., Contucci, P.: Bipartite mean field spin systems. Existence and solution. Math-Phys. Electr. J.
14, 1 (2008)

8. Mc Fadden, D.: Economic choices. Am. Econ. Rev. 91, 351–378 (2001)
9. Kossinets, G., Watts, D.J.: Empirical analysis of an evolving social network. Science 311, 88–90 (2006)

10. Ebel, H., Mielsch, L.-I., Bornholdt, S.: Scale-free topology of e-mail networks. Phys. Rev. E 66,
(R)035103 (2002)

11. Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446, 664–667 (2007)
12. Onnela, J.-P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., Barabási, A.-L.:

Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. 104, 7332–7336
(2007)

13. Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social networks. Proc. Natl. Acad.
Sci. 99, 2566–2572 (2002)

14. Bovier, A., Gayrard, V.: The thermodynamics of the Curie–Weiss model with random couplings. J. Stat.
Phys. 72, 643–664 (1993)

15. Agliari, E., Barra, A., Camboni, F.: Criticality in diluted ferromagnets. J. Stat. Mech. P10003 (2008)
16. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97

(2002)
17. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 409–410 (1998)
18. Newman, M.E.J., Watts, D.J., Barabasi, A.L.: The Structure and Dynamics of Networks. Princeton Uni-

versity Press, Princeton (2006)
19. Caldarelli, G., Vespignani, A.: Large Scale Structure and Dynamics of Complex Networks. World Sci-

entific, Singapore (2007)
20. Bond, R., Smith, P.B.: Culture and conformity: A meta-analysis of studies using Asch’s (1952b, 1956)

line judgment task’. Psychol. Bul. 119, 111–137 (1996)
21. Erdös, P., Renyi, A.: On random graphs. I. Publ. Math. 6, 290–297 (1959)
22. Barrat, A., Weigt, M.: On the properties of small-world models. Eur. Phys. J. B 13, 547–566 (2000)
23. Contucci, P., Ghirlanda, S.: Modeling society with statistical mechanics: an application to cultural contact

and immigration. Qual. Quant. 41, 569–578 (2007)
24. Brush, S.G.: History of the Lenz-Ising model. Rev. Mod. Phys. 39, 883–893 (1967)
25. Newman, M.E.J., Barkema, G.T.: Monte Carlo Methods in Statistical Physics. Oxford University Press,

Oxford (2001)
26. Buonsante, P., Burioni, R., Cassi, D., Vezzani, A.: Diffusive thermal dynamics for the Ising ferromagnet.

Phys. Rev. E 66, 036121 (2002)
27. Agliari, E., Burioni, R., Cassi, D., Vezzani, A.: Diffusive thermal dynamics for the spin-S ferromagnet.

Eur. Phys. J. B 46, 109–116 (2005)

http://arxiv.org/abs/arXiv:0710.3256


A Diffusive Strategic Dynamics for Social Systems 491

28. Agliari, E., Burioni, R., Cassi, D., Vezzani, A.: Fractal geometry of Ising magnetic patterns: signatures
of criticality and diffusive dynamics. Eur. Phys. J. B 49, 119–125 (2006)

29. Agliari, E., Burioni, R., Cassi, D., Vezzani, A.: Random walks interacting with evolving energy land-
scapes. Eur. Phys. J. B 48, 529–536 (2006)

30. Szalma, F., Iglói, F.: Two-dimensional dilute Ising models: critical behavior near defect lines. J. Stat.
Phys. 95, 763–770 (1999)


	A Diffusive Strategic Dynamics for Social Systems
	Abstract
	Introduction
	Model and Notations
	Diffusive Strategic Dynamics
	Numerics
	Conclusions and Perspectives
	Acknowledgement
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


